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1 Introduction

This paper addresses a number of issues relating to definitions of truth or sat-
isfaction over nonstandard models of arithmetic (PA).

The situation is familiar. We take one of the usual signatures for the language
(such as &£ : +,-,0,1, <) and identify formulas with their Godel number. Some
usual Godel-numbering is chosen, and we note that syntactic operations are
well-behaved and absolute between a model of PA (in fact rather less is needed)
and its standard initial segment.

Given a nonstandard M F PA we wish to add a new relation or predicate
Tr(p) (for truth) for (possibly nonstandard) sentences ¢ or Sat(y, a) (for satis-
faction) for formulas ¢ and assignments of values for variables a.

Provided we do not require our truth/satisfaction predicate to satisfy too
many axioms, such Tr (or Sat) can be defined for all models M. If we wish to
make the inductive steps in Tarski’s definition of truth hold, such Tr (or Sat)
can be given for all countable recursively saturated M, a result due to Kotlarski,
Krajewski and Lachlan [2]. That the non-trivial property of recursive saturation
is necessary is a result due to Lachlan [3].

2 The relevance of nonstandard models

The objective for this first section is to justify the general methodology and
framework to be used, that is, the target language for statements such as ¢ and
the reason for using nonstandard models to analyse notions of truth.

I take it that our primary interest is in ‘truth in the real world’, and I
shall take, as our model for the ‘real world’, the standard natural numbers N,
with arithmetical structure given by addition, multiplication and order. This
seems to be a sensible minimum that has the expected problems of the actual
(or mathematical) real world, in particular it has all the metamathematical
difficulties presented by Godel and others.

The main reason for considering nonstandard models and nonstandard sen-
tences is to simplify the discussion and to decouple it from any additional con-
siderations concerning the highly complex and, in some technical senses of the
word, unknowable theory of the standard natural numbers N. Our starting
point is that there is some reasonable way of asserting statements such as ;
that is, we have some method or methods for determining those situations in



which ¢ does or does not hold. I do not at the outset make any assumptions ab
initio that these methods are Tarskian.

(Indeed, other possibilities for ‘assertion’ come to mind such as ones related
to provability in a formal system. Or, alternatively, suppose expressions in the
language were given Godel numbers in some sophisticated and unusual way.
Then the truth or falsity of a statement might be seen directly from some
number theoretic properties of the Gédel number.)

To avoid circularity, methods for determining when ¢ does or does not hold
ought not depend on complete knowledge of the real world, the structure N,
nor indeed on the full first order theory of N, for we hope to be able to say
something useful about when a statement ¢ is true without prior knowledge of
all statements ¢ in the same language and whether they are or are not true.
Or, if it turns out that such a theory does necessarily depend on the full first
order theory of N, then that is a conclusion that we should like to draw, and
not an assumption we wish to build into the investigation at the outset.

(For example, the Tarskian theory provides one such framework for truth
in a model. It is based on induction, as indeed is all our knowledge of the real
world N. If the grounds for accepting that Tarskian theory were seen to be the
same induction principles as those for knowledge of the real world N, as is at
least plausibly the case, then we would be left in the situation that our theory
of truth of the real world is equivalent to full knowledge of the real world, a
situation that would seem to present little progress. So we choose not to start
with such a strong base. If this is of necessity the case, we would like to know
about it, which makes a weak base necessary for our methodology so that we
are able to attempt a proof.)

Thus it is essential none of our discussions about truth should be based on
the assumption that we have full knowledge of N or even Th(N).

The simplest mathematical way to decouple our discussion of truth in N
from N itself is to give a minimal set of axioms that we accept about N and
investigate the class of (possibly nonstandard) models of that set of axioms. In
the following I shall take PA as the base axioms, though with extra effort this
could in most probability be replaced by some much weaker set if required.

There is the issue of the mathematical and set theoretical framework suffi-
cient for the model theory required. In regards this I would comment that:

(a) It is indeed rather strong, and stronger than one would normally desire,
but the methods of model theory has the major benefit of being clear: if
some result depends on a model being an elementary extension of N (as
opposed to just a model of PA) this will be obvious.

(b) The set theoretical basis is at least axiomatised and can be replaced
if needed with an appropriate system for second order arithmetic (e.g.

ACA,, WKL).

(c) Proof theoretic methods are of course also possible. These seem best suited
to a second and more refined approach, since they are often longer, more
technical, and somewhat more error-prone, and lack the clarity mentioned
in (a).

To summarise: a theory of assertion of statements such as ¢ is, we hope,
substantially weaker than the full first order theory of the natural numbers. We



want to examine various theories of truth that develop this theory of assertion.
It is essential that full knowledge of ‘the real world’ is not built into our starting
position, implicitly or explicitly. This can be seen most clearly using techniques
from normal mathematical practice and model theory. Other approaches may
later sharpen the results we obtain.

3 Reflections

In one sense at least the method works. Given a nonstandard model M F PA,
by standard mathematical techniques we can say what it means for a standard
formula ¢ to be satisfied under an assignment a, and we can define a predicate
Sat(p,a) on M capturing this exactly for such standard ¢, and defined in some
arbitrary way for nonstandard ¢. Thus we get a satisfaction class satisfying the
disquotational scheme

(DS) Sat(p,a) < ¢lal

for all standard ¢.

This seems to be the basis for the deflationist position on truth. However
the main problem is that it does not say anything about truth for nonstandard
formulas. Recall that the reason why nonstandard formulas are there in the first
place is that we wish to decouple our theory of truth from complete knowledge
of the real world. The theory we have at this point has the issue that it requires
some additional knowledge of N, and we are not in a position at the moment to
say how much.

The usual approach is to add other axioms to our theory of satisfaction, if
possible ones that have (DS) as a consequence. The most familiar set of axioms
follow Tarskian lines.

Sat(t = s,a) < val (t,a) = val (s, a)
Sat(t < s,a) «> val(t) < val(s)
at(—p, a) <> ~Sat(p, a)
(

(

w2

Sat(p A1), a) <> Sat(p,a) A Sat(v, a)
Sat(Vv g, a) < YV Sat(p, alz/v]).

The additional axioms are reflections on truth. Because we are so familiar
with Tarski’s definition we think of these as ‘obvious’, but we made no assump-
tions on how we (or some other agent) managed to ‘assert’ statements such as
, and for some modes of assertion Tarski’s axioms may not be at all obvious.

(For a natural language example, note that natural language has many ways
of expressing conjunction. For example ‘X is a yellow brick’ can be construed
to mean ‘X is a brick and X is yellow’. Now consider, ‘Y is a red panda’. This
could reasonably mean ‘Y is a panda and Y is red’, but it could also mean that
‘Y is a member of the species Ailurus fulgens’. The equivalence of ‘Y is a panda
and Y is red’ and ‘Y is a member of the species Ailurus fulgens’ might well be a
nontrivial true reflection on the world—involving for example, verification that
no-one ever took a panda of species Ailuropoda melanoleuca and painted it red.)

Much mileage has been made of the fact that PA with the above axioms
(PA + Sat, the theory of a full satisfaction class Sat) is conservative over PA.



Such arguments do indeed support the safety of the above reflection, but do not,
as far as I see, support the idea that these axioms express nothing about ‘truth’
(or satisfaction) that was not already apparent from the assertability notion we
started from.

For the development of mathematics, however, other reflections are essential.
Key amongst these are the addition of an induction scheme in the language
with Sat. The two most familiar of these are Ag—PA(Sat) (predicative induction,
or induction for bounded formulas) and PA(Sat) (full induction). Neither of
these is conservative over PA + Sat.

4 Non-conservativity and Lachlan’s theorem

Indeed, I see no significant reason to think that conservativity for .Z is important
for the deflationist view but conservativity for Z ., is not. (To be precise, I
am not arguing against deflationism here, nor am I arguing that conservativity
for £, is important, only that focusing on conservativity for £ as being a
major virtue is a strange position to take.) Indeed Lachlan’s theorem (already
mentioned) shows that PA 4 Sat is not conservative over PA for 2 ,, since
the principle ‘If this model is nonstandard then is is recursively saturated’ is
expressed by the scheme

Va (/\ Jz /\Hi(x,a) — Yy Jz /\(i<y—>0i(x,a))>

neN <n i€N

where (6;);en runs over recursive sequences of £ formulas.

Lachlan’s theorem is rather subtle and of general interest and I want to
explore it is a bit more detail here.

First, the condition that the satisfaction class is full says that it determines
truth for every formula with Godel number in M and every possible assignment
of the variables. In fact this is not necessary for Lachlan’s result: it turns out
that it suffices that Sat decides truth for a reasonable class of formulas containing
all formulas of size up to a given nonstandard value o > N and closed under
subformulas. (Having made this point I will simplify the discussion and restrict
to full satisfaction classes.)

Less well known than Lachlan’s theorem is a somewhat more general re-
sult that gives other information about nonstandard formulas. Many published
proofs of Lachlan’s theorem actually show the following result.

Theorem 4.1. Let M E PA+Sat be nonstandard and (6;);cn a coded sequence
of formulas in a single free variable. Then the subsets

P, ={xz e M : Sat(6;, [x])}
for i € N do not define a partition of M indexed by 7 € N.
This generalises slightly.

Corollary 4.2. Let M F PA+Sat be nonstandard and (6;);en a coded sequence
of formulas in a single free variable. Suppose that the subsets

P, ={xz e M : Sat(6;, [x])}

for ¢ € N are all disjoint. Then all but finitely many of the P; are empty.



Proof. Given the statements 6;(x) we define by a recursion new statements
0;x(x) (for k < i) as follows,

Bo,0(x) :==0p(z) V (x =0 AV —by(v))
Oio(x) :=0;(z) A (x =0 — v 6y(v))

and, for i > k > 0,

Hhk(x) = Hk’k,l(x) \Y (:17 =k AYv ﬁﬁk’k,l(v))
Hi’k(x) = 0i7k_1(13) AN (:L‘ =k— v 9k7k_1(1}))

Thus, putting Q; ; = {« : Sat(§; j,x)} we have

Qoo = Po if Py # 0, Qo.0 = {0} otherwise

Qio = P if Qoo # 0, Qi0 = P, \ {0} otherwise
Q11 =Q10if Qi o # 0, Q1.1 = {1} otherwise

Qi1 = Qi if Qi # 0, Qi1 = Qio\ {1} otherwise

and so on. This defines a coded partition {Q;; : ¢ € N} of M. (More formally,
assuming cofinally many P; are nonempty, we can show by induction on k that

Q070U...UQ/€,;€gP()U...UPkU{O,l,...,k}
and

Q0,05+ - Qs Q1,5 Qret 2,k - - -
is a disjoint collection of sets whose union is M) O

Incidentally, the last corollary also shows that full PA is not needed in Lach-
lan’s theorem: provided the arithmetic theory of M is strong enough to handle
syntax (a theory such as IAg+exp is certainly sufficient), if M has a satisfaction
class then it will be recursively saturated. Full PA is usually convenient and
used (for example in Models of Peano Arithmetic [1]) to simplify the reduction
of Lachlan’s Theorem to Theorem 4.1.

Lachlan’s theorem also yields an interesting conclusion that is analogous to
an induction principle for Sat in Zg,¢ even though none was given in axioma-
tisation for PA 4 Sat. More precisely, the conclusion is an overspill principle,
i.e. a consequence for the nonstandard numbers of M when the premise of an
induction holds for the standard natural numbers.

Corollary 4.3. Let M E PA + Sat be nonstandard, and 6(z) a possibly non-
standard formula in a single free variable. Then if Sat(0, [k]) holds for all k € N
there is some = > N such that Sat(6, [z]).

Proof. If not, when applied to Sat the formulas ‘—6(x)’ and ‘@ = i’ (for i € N)
would give a coded partition of M. O

This raises an interesting question that I not currently able to resolve.

Question 4.4. Let M E PA be nonstandard and (6;); < v is a coded sequence
of sentences, where v is nonstandard. Suppose that Sat(6,,[a]) holds for all
n € N. Does it follow that Sat(6,,[a]) for some nonstandard z < v?



5 A language with full conservativity!'

Taking .Z as the usual language for arithmetic, note that each formula of ¥
has a natural rank:

(a) rank(@) = 0 if 0 is atomic or negated-atomic;
(b) rank(3z ) = rank(Vx 0) = 1 4 rank(d); and
(c) rank((0 A p)) = rank((0 V ¢)) = 1 + max(rank(d), rank(y)).

The stratified sub-language Zitrat is the sub-language that permits (6 A ) and
(6 V ) only when 6,1 have the same rank. A formula is stratified if it is in this
language.

Theorem 5.1. Let M E PA be countable. Then there is a predicate Sat on M
satisfying Tarski’s axioms for all stratified formulas.

The proof goes by showing that in a nonstandard model M, template logic
or FA-logic can simulate all instances of the M-rule. This is the original style of
argument for the Kotlarski-Krajewski-Lachlan theorem [2], but they required
full recursive saturation to handle Th(M). The objective is to reduce this re-
quirement to 3, -recursive saturation for all standard n. This requires bounding
the complexity of formulas that arise.

A template for a finite set of nonstandard stratified formulas can always
be found that is ¥,, for some n: leave all standard-depth formulas alone and
approximate all nonstandard formulas to some fixed (standard) depth. This
works because stratified nonstandard formulas only relate (e.g. in the sense that
one contains another as a sub-formula) in a small number of ways to standard
depth, and we can ignore such relations at nonstandard depth. Thus the depth
we need approximate our finite set 3, 8(v) of nonstandard formulas is some fixed
n depending on the standard-depth formulas in it.

It follows (from cut-elimination) that in template proofs of Th(M) + X, 0(a)
for a in M, assumptions from Th(M) of complexity higher than n can be elim-
inated, so we only need assumptions from X,,~Th(M). So if Th(M) F X,6(a)
for all a in M, there are finitely many templates doing this, by X, -recursive
saturation. These finitely-many templates can be combined to a single proof of
Th(M) F X,Vv 0(v).
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1The main result here is not in a detailed form suitable for general dissemination but a
sketch is presented here. A write-up of the argument is planned for the near future.



